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The photolysis of aryl azides has found important applications cDCl,
in lithography, polymer chemistry, and affinity labeling of biomolecul- (a)
es! UV irradition of phenyl azide X) yields singlet phenylnitrene cbcl,
(*PN), which above 165 K rapidly ring-expands to 1-azacyclohepta- ‘.
1,2,4,6-tetraen@.23 Below 165 K, intersystem crossing (ISC) to
triplet phenylnitrene 3PN) dominates. The characterization of (®)
intermediates on the &N potential energy surface and the
mechanism of their interconversion have created great challenges
for experimentalists and theoreticigh$Spectroscopic evidence ©)
exists for'PN,3 3PN,*~¢ and2.7-° Secured also are the singtetip-
let gapEst,19111SC rate constarksc,®® and ring-expansion barrier
of 1PN.30 Missing are spectroscopic evidence for benzazi@e (4
and the barrier of th@-to-!PN rearrangemen, which combined (d) .
with the known ring-expansion barrf&would provide the energy
difference betweef and'PN, which is difficult to calculate accur-
ately!415 This barrier can be obtained from the lifetime &f if r
bimolecular decay pathways (polymerization or additiol}tare L RN RS LR AR AR R RS RARES RARRE RARRS RARRN RAARY
excluded, e.g. at low concentration. Under these conditions, the 170 150 130 110 30 70 ppm

. . : Fi 1. Partial’3C NMR spectra o#03Cs-1 (75 MHz; degassed
room-temperature ring-contraction rate of the pafemtd the ring- cllg/ucr%ds 6:1: —86 °C). (a)pBefore (b)gﬁgmé diately, an dg)(5 h aﬁci

contraction barrier of 5-methyl-substitut2dhave been measurégl. photolysis & 320 nm; 12 min—82 to—83 °C; 50% conv.). (d) Difference
spectrum (b-c). 13C-Signals of incarcerateBCq-2 are marked @).
0 hy i ks A AN We incarceratedl and fully *C-labeled**Cs-1 inside 4 by
@ - —<k—2’ ‘f Q reacting5 with butane-1,4-dimesylate, &30;, and excesd or
1 PN 3 2 13Ce-1 in HMPA for 3 days (91% and 70% yield, respectively).
klscl H,0 l Brief irradiation 0of401 in Ar-saturated CHCl, at 194.4 K yielded
! a new compound with a characteristic IR absorption at 1886'cm
e 2 which shifts to 1830 cmt if 4013C¢-1 is irradiatedt® We assigned
@ NH the new compound to hemicarceplé®?2 and the band at 1886
N\ 7/ cm~1 to the ketenimine stretch @based on the similar frequency
°PN 6 of free 2 (1895 cnt?, Ar, 10 K;7 1887 cnT?, heptane, 295 &, the

) ) ) ] isotopic shiftt® and the thermal instability of this compound, whose
Encapsulation provides an alternative approach, which we and |itetime is 32 min at 194.4 RO Furthermore, photolysis @fo1 in
others have used to prevent bimolecular reactions of strained yegassed THFA® (8:1) at—78 °C gave the HO-trapping product
intermediates allowing for their NMR spectroscopic observation 406 (20% yield)2!
and quantification of their intramolecular rearrangeméhfshe The low-temperatur&C NMR spectrum of a photolyzed solution
successful investigation of arylcarbenes inside hemicarcerandsyf 4013C4-1 revealed at least three photoproducts together with un-
suggested to us that similar experiments could be possible for photolyzedd®13Cs-1 (50%). Only one product (formed in 18% vield)

IPN.Y7deHere, we report the successful ring expansiolPdf inside decayed withi 5 h at—86 °C and was assigned #03Cs-2. A
hemicarcerand},'® the first NMR spectroscopic characterization ifference spectrum shows the six multiplets of incarcer&@g2
of 2 and the barrier for its rearrangement'®N. (Figure 1d). From &H-coupled'*C NMR spectrum we assigned

the doublet ad 155.2 to the quaternary carbon'&€s-2. The direct
J-coupling constantdJcc allowed assignment of the remaining
multiplets and were found to be consistent with the bond order al-
teration and carbon hybridization Zn Furthermore, the guest'3C
chemical shiftsgcon, after correction for the effect &f by adding
the host-induced upfield shift of benzene) = 1.3 ppmi?° com-
pare very well with those calculated by the DFT approach, leaving
no doubt that the new hemicarceplex4i®3Cs-2 (Table 1)%?
The other two products are secondary photoproducts formed on
irradiation of13Cs-2.7 Elucidation of their structures is in progress.
Low-temperaturéH NMR spectroscopy (degassed €I; 191

R =(CH2)4CH3 4: A= (CH,) . . : ; ;
SA=HH K) allowed us to identify only one proton & which gives rise to
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13C Chemical Shifts of 2

Jeic2 =92 Hz
= TN
Jeacs =46 Hz
Jeaca =72 HZ{4 chf,cG =68 Hz

Table 1.

Jeacs = 53 Hz
carbon Oexp Ocor® Ocalc® o
1 155.2 156.5 153.4 —-31
2 54.7 56 55.3 -0.7
3 124.6 125.9 127 11
4 127.7 129 132.5 35
5 116.2 117.5 120.1 2.6
6 137 138.3 141.7 3.4

28cor = Oexp — [Obenzenfre€) — Openzenfincarcerated)}’”® ® GIAO
shielding tensors (PBE1PBE/6-311&(2d,2p)//6-311G*) relative to TM%
CAO = Ocalc — O

corr-

a broad triplet ab 3.02 ppm (see Supporting Information). This
signal decayed with a rate constégis= 3.2 x 104 s™%, identical

to kops measured by FT-IR. The remaining guest signals were
covered by host signals.

From the decay of the characteristic ketenimine stretch of
incarcerate@, we determined the rate constégysfor the thermal
decomposition oR between 198.3 and 174.3 K. To calculate the
effective ring-contraction rate constakt = kxka/k, from kops We
made the following assumptions: (2)does not react witd. (2)
1PN does not react with within its lifetime but rather ring-expands
to 2 or irreversibly intersystem crosses¥N. 3PN subsequently
reacts with4 at a rate much faster than it is formed as supported
by our NMR experiments. (3) The ring-expansion rate condtant
and intersystem-crossing rate constagt of 2 in the inner phase
of 4 are identical to those measured in pent&@néhe following
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Ink'

-10

11 : : .
0.005 0.0052 0.0054 0.0056
Ut
Figure 2. Arrhenius plot for the 1-azacyclohepta-1,2,4,6-tetraene to singlet
phenylnitrene rearrangement inside hemicarceand

0.0058

eters for the ring contraction & which complements earlier LFP
studies®8 The successful inner-phase ring expansiotPdf and the

fact that photolysis o®1 at 77 K yields small amounts d@f>27-°
suggest that many other substituted arylnitrenes can be ring-expand-
ed inside suitable hemicarcerands, limited only by the ability to
incarcerate the corresponding azides. An even better understanding
of this important rearrangement can be expected from such studies.
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